Final exam of Topology II

Due Date: March 9, 2018

- 1. Let X be the space of 2-dimensional subspaces of \mathbb{R}^5 . (This is called a Grassmanian, and is sometimes denoted Gr(5,2)). Find appropriate charts that give X the structure of a smooth manifold.
- 2. Show that every non-orientable manifold has a 2-sheeted orientable covering space.
- 3. Suppose that M be a compact, orientable *n*-manifold without boundary and let θ be a (n-1)-form. Prove that $d\theta$ must vanish at some point.
- 4. Let y be a regular value of a differentiable map $f: X \to Y$ where X is compact and X and Y are differentiable manifolds of the same dimension. Show that there exists an open neighborhood U of y such that $f^{-1}(U)$ is a disjoint union of finitely many open sets V_i , $i = 1, \dots, n$, and, for each $i, f|_{V_i}$ is a diffeomorphism with U.
- 5. Let ω be an *r*-form on a differentiable manifold *M*. Assume that $\int_{\Sigma} \omega = 0$ for every submanifold Σ of *M* diffeomorphic to S^r . Show that ω is closed.
- 6. Prove or disprove. Let M be a connected manifold and $F \subset M$ a finite subset. Then there exists a smooth vector field X such that X restricts to nonzero at each point in F.
- 7. Show that if the map $f: S^n \to \mathbb{R}$ is differentiable, then there exist two different points $p, q \in S^n$, so that df_p and df_q are both 0.
- 8. (a) Show that if a path-connected, locally path-connected space X has $\pi_1(X)$ finite, then every continuous map $X \to S^1$ is homotopic to a constant map.

(b) Let $p: E \to B$ be a covering map, with E path connected. Show that if B is simply-connected, then p is a homeomorphism.